"APPROVED FOR RELEASE: 09/01/2001

UDC 624.131.43+539.21.084-492.3

USSR

ZAVRIYEV, K. S., SHPIRO, G. S.

"Calculating Massive Foundations for Deep Laying in a Multilayered Soil Series"

Tr. VNII transp. str-va (Works of the All-Union Scientific Research Institute of Transport Construction), 1971, vyp. 78, pp 87-93 (from RZh-Hekhanika, No 11, Nov 71, Abstract No 11V620)

Translation: In the development of a procedure for calculating massive foundations of bridge supports for deep laying discussed in Appendix 25 of SN 200-62 [Construction Norms 200-62], formulas are proposed which permit calculation of foundations buried in a multilayered soil series. The formulas are based on a calculation scheme in which the foundation is considered as an infinitely rigid beam, and the soil series is considered as an elastic base characterized by the bedding coefficient which varies with depth according to an arbitrary law. In contrast to the SN 200-62 procedure, the resistance of the soil base to displacements of the footing points of the foundation not only in the vertical but also in the horizontal directions. The formulas permit determination of the displacements of the foundation, the internal stresses in its transverse (horizontal) cross sections, the normal stresses arising at the contact of the soil with the lateral surface of the foundation and also the normal and tangential stresses arising at the contact of the soil base with the foundation footing. 1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

UDC 620.179.1

USSR

GORBUNOV, V. I., ZAV'YALKIN, F. M.

"Radiometric Method of Plaw Detection Using Fillers"

Sverdlovsk, Defektoskopiya, No 1, 1971, pp 119-124

Abstract: A study was made of the problem of selecting the filler as a function of the spectrum of the source and the density of the product material. Results are presented from both calculations and experimental studies of the application of a filler for controlling products made of iron and aluminum using Co-60 and of a filler for controlling products made of iron and aluminum using Co-60 and of a filler for controlling products made of iron and aluminum using Co-60 and of a filler for controlling multichannel defectoscope for controlling cast iron Cs-137. An isotopic multichannel defectoscope for controlling cast iron crankshafts of diesel engines before machining is described. The device is described for detecting internal flaws in accordance with the following technical signed for detecting internal flaws in accordance with the following technical signed for detecting internal flaws in accordance with the following technical signed for detecting internal flaws in accordance with the following technical signed for detections:

1) the thickness of the controlled product in the direction of specifications varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device is irradiation varies from 180 to 40 mm; 2) the output capacity of the device

1/1

Acc. No. 101698a Copelymerization of vinyl chloride with acrylic acid. Ruchinskii. S. R. Zavyalov. A. N. Krupthov. H. K. Kruntsel, B. A. (USSR). Rimi. Volana 1970, (31, 75) (1888). Vinyl chloride (1) and acrylic acid (11) were copolynic, in MeOH contg. some H-O at atm. pressure and -10 to 5 with an initiating system comprising (NH.) S.O., Rongalite, and Cu salts to give I-II copolymer (III), which was more conced. in II than the original monomer mixt, dyed well with basic dyes, had glass transition temp. -100, was more so, in org. solvenis than pure I polymer (IVI and formed fibers from acetone and HCONMer solns. Fibers of III having 10% and 27.2% II had lower tex, strength, and % elongation than IV fibers, but higher shrink resistance (except for III with 21.2% II heated in air at 130°).

REEL/FRAME

19801715

USSR

UDC 539.143.43+661.718.1

ISHPAYEVA, E. A., KHARRASOVA, F. M., ZAV YALOV, A. P., and PUDOVIK, A. N., Kazan State University ineni V. I. Ul'Yanov-Lenin, Kazan

"The Dipole Koments of Para-Substituted Phenylphosphonates"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No 3, Kar 71,

Abstract: The dipole moments of the p-substituted phenylphosphonates p-XC6H4P(0)(OEt)2 (X = Me, MeO, Cl, Br) and of PhP(0)(OEt)2 were determined experimentally. They were also calculated on the assumption that the dipole moment of the (EtO)2P(O) - group had the value 2.30 D which followed from an orientation of this group in such a manner that the components along the coordinate axes had the values $m_{\chi} = 0.72$, $m_{y} = 0$, $m_{z} = 2.19$ D (shmayeva, et al Izv. AN SSSR, Ser. Khim., 1970, 2695). The calculated values for compounds p-XC6HLP(0)(OEt)2 did not correspond to the experimental values, apparently because of an interaction of X with the (EtO)2P(O)-group by conjugation, through the phenyl ring. The experimentally determined dipole moment of PhP(0)Cl2 corresponded to the calculated moment. 1/1

1/2

UNCLASSIFIED

PROCESSING DATE--18SEP70

TITLE--ROLE OF THE INTRACRYSTALLITE DISTRIBUTION OF CARBON IN THE DEVELOPMENT OF THE PEARLITE TRANSFORMATION OF AUSTENITE -U-

AUTHOR-(02)-BRUK, B.I., ZAVYALOV, A.S.

COUNTRY OF INFO--USSR

SOURCE--IZV. AKAD. NAUK SSSR, METAL. 1970, (1), 245

DATE PUBLISHED---- 70

SUBJECT AREAS -- MATERIALS

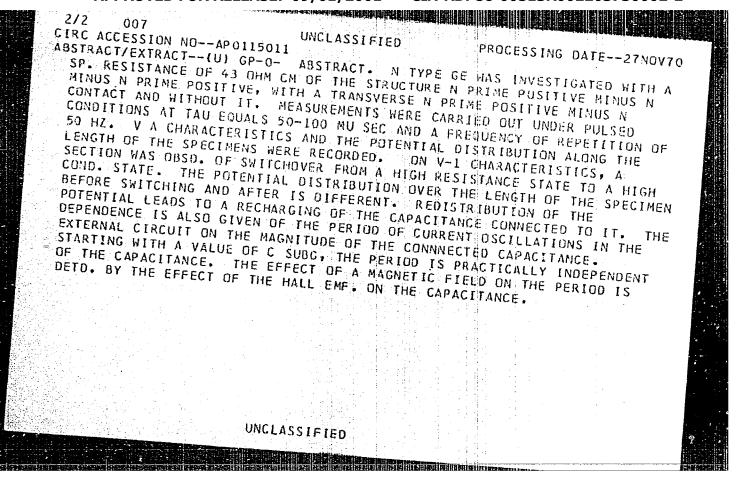
TOPIC TAGS--AUSTENITE TRANSFORMATION, BORON INTENSIFIED STEEL, ALLOY STEEL, MICROSCOPY, CARBON, SOLID SOLUTION, LANTHANIDE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1984/0163

STEP NO++UR/0370/70/000/001/0245/0245

CIRC ACCESSION NO--AP0054959


UNCLASSIFIED

OCTO ACT /S	YTDACT-	AP005	-0-	ABSTR	ACT.	AUS	TENITE	TRAN	SEORMA	TION	IS MING		
INHIBITE ELEMENTS	THE	TAICR FAS	FO TE	MPFRI	NG BY	MIC	ROSCOP	PICALL	AY SMAL	L AUU	142 · 01	= В Гн=	
AND LANT	HANIDES T AT TH	IS DUE E EDGES	OF T	HEIR HE GF	SMALL	IS I	NCREAS	ED.	30CM•	, 30			
				2 - 1 + 2				• .					
		* "				1							
		•				# .	A. II.						
		•				1. 54	3.24						
						· . · .							-
		i de					• • • • • • • • • • • • • • • • • • • •	•					
							•						
		474		:									
			*	•			.			÷.			
						. :			: 1				•
								1.				**	

PROCESSING DATE--27NOV70 TITLE-RELAXATION OSCILLATIONS ARISING DURING A STUDY OF GRADIENT INSTABILITY IN NEARLY INTRINSIC GERMANIUM -U-AUTHOR-(03)-ZAVYALOY, A.V., KARLOVA, G.F., LYUZE, L.L. COUNTRY OF INFO--USSR SOURCE--FIZ. TVERD. TELA 1970, 12(3), 915-17 DATE PUBLISHED----70 SUBJECT AREAS--PHYSICS TOPIC TAGS--GERMANIUM, VOLT AMPERE CHRACTERISTIC, OSCILLTION CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0181/70/012/003/0915/0917 PROXY REEL/FRAME--1994/0990 CIRC ACCESSION NO--APO115011

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

UNCLASSIFIED.

USSR

ZAV'YALOV, B. A., Candidate of Technical Sciences

VDC 656.22-52

"Structural Version of a Complex Automated Traffic Control System"

Moscow, Avtomatika, Telemekhanika i Svyaz', No 3, 1972, pp 9-12

Abstract: A study was made of an all-around automatic traffic control system which optimizes the planning and coordination of train traffic in sections and the junctions and stations with marshalling yards adjacent to them. The system is envisioned as combining previously developed autonomous systems. It is designed automatically to correct the schedules and execute them with the application of mathematical methods and computers. The various technological subsystems of a complex automatic centrol system are discussed, its elements are defined and the purpose of the elements described. The types and content of the information required by the various subsystems are discussed. The new system referred to as the ASU-KURS is a system of the man-machine class. The method of differentiated requirements on the machinery of the system is recommended for the ASU-KURS. A study of this approach is the primary purpose of

1/1

53

USSR

UDC 619.616.42-075:636.4

MURATOV, S. I., BURLEYNYY, V. V., Ivanovo Agricultural Institute, KISELEV, Yu. T., Ivanovo Oblast Veterinary Laboratory, and ZAV YALOV, N. D.,

"The Serum Ring Test in the Diagnosis of Brucellosis in Swine"

Moscow, Veterinariya, No 11, 1972, pp 61-62

Abstract: Muratov's serum ring test (SRT) can detect the presence of brucellosis in a herd of animals within a few hours. Early studies showed it to be effective in diagnosing the disease in buffalos, reindeer, and mink. This results of the SRT test were compared with those of the agglutination and complement-fixation tests performed on blood samples from \$24\$ swine (115 on 2 coincided with those of the other tests only in the case of animals on the healthy farms. The reactions were negative in the case of animals on the

1/1

- 90 -

USSR

VDC 542.91.547.854.4

ZAV YALOW. S. I., GUNAR, V. I., and OVECHKINA, Institute of Organic Chemistry imeni N. D. Zelinskiy, USSR Akademy of Sciences

"The First Case of ()2-Alkylation of 1-Substituted Uracils"

Moscow, Izvestiya Akad. Nauk SSSR, Seriya Khinicheskaya, No 1, Jan 72, pp 210-211

Abstract (letter to editor): The writers claim to have established that alkylation of 1-substituted uracils can be directed to the oxygen atom with C^2 , provided $(CH_3)_2$ CHI (YP) is used as the alkylating agent, and also that (CH_3) COH (TB) is used as the solvent. A structural scheme for the reaction is included in the letter.

1/1

UNCLASSIFIED
PROGESSING DATE-ZJUGITO
PROGESSION NO-APOLISTS
PROGESSION N

PROCESSING DATE---230CT70 UNCLASSIFIED 2/2 0.08 CIRC ACCESSION NO--APO119758 6, METHYLTHIOPURINE (I) AND HGCL ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. SUB2 IN ETOH GAVE A 1:1 COMPLEX, DECIMPD, 215-18DEGREES, WHICH WITH H SUB2 S REGENERATED THE PURINE. PHNH SUB2 AND HGCL SUB2 WITH I GAVE 77PERCENT 6, ANILINOPURINE, M. 284-6 DEGREES, WHILE RHO-CHLOROANILINE GAVE 6, (RHO, CHLOROANILINO) PURINE, M. 317-19DEGREES. I AG SALT AND ACCL IN C SUB6 H SUB6 GAVE THE 9, AC DERIV. OF I, M. 134-6DEGREES, WHICH WITH PHNH SUB2 3 HR AT 110 DEGREES GAVE 45 PERCENT 6, ANTLIO, 9, ACETYLPURINE, H. 271-2DEGREES, WHILE HOLDING WITH AQ. MENH SUB2 2 HR GAVE 71PERCENT 6, METHYLAMINO, 9, ACETYLPURINE, M. 219-21DEGREES. 5, METHYL, 6, METHYL, 2, THIOURACIL AND HGCE SUB2 TREATED WITH BUOH IN THE PRESENCE OF PRIDINE 6 HR AT REFLUX GAVE 37PERCENT 2, BUTOXY, 4, HYDROXY, 6, METHYLPYRIMIDINE, M. 87-8DEGREES, WHICH WITH AQ. HCL GAVE 6, METHYLURACIL. SIMILARLY, S, METHYL, 2, THIOURACIL GAVE 2, BUTOXY, 4, HYDROXYPYRIMIDINE, M. 85-6DEGREES. THUS, HGCL SUB2 CATALYZES AMINATION OF I AND ALCOHOLYSIS OF S-ME THIOURACILS. FACILITY: INST. ORG. KHIM. IM. ZELINSKOGO, MUSCOW, USSR.

UNCLASSIFIED

1/2 017 UNCLASSIFIED PROCESSING DATE—13NOV70

TITLE—MGDELING OF BIGTIN BIJSYNTHESIS. 2. INTRODUCTION OF DAYGEN AND
SULFUR ATOMS INTO MOLECULES OF 2.IMIDAZOLINDNE DERIVATIVES -UAUTHOR—(05)—RODIONDVA, N.A., UNANYAN, M.P., KONDRATYEVA, G.V., ZAVYALOV,
S.I., FILIPPOV, V.V.
COUNTRY OF INFO—USSR

SOURCE—IZV. AKAD, NAUK SSSR, SER. KHIM. 1970, (3) 660-5

DATE PUBLISHED————70

SUBJECT AREAS—BIGLOGICAL AND MEDICAL SCIENCES, CHEMISTRY

TOPIC TAGS—IMIDAZOLE, KETONE, ORGANIC SULFUR, BIOSYNTHESIS, GLYCINE,
SERINE, VITAMIN

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1999/1764

STEP NO--UR/0062/70/000/003/0560/0665

CIRC ACCESSION NO--APO123563

UNCLASSIFTED

PROCESSING DATE--13NOV70 UNCLASSIFIED 017 ABSTRACT. HEATING 3.5 G A. METHYL, 2, CIRC ACCESSION NO--AP0123563 2/2 INIDAZOLINONE WITH 1.1 G PARAFURMAL DEHYDE AND 1-2 DROPS ET SUB3 N IN ABSTRACT/EXTRACT--(U) GP-0-MEDH 3 HR GAVE 4(5), METHYL, 5(4), HYDROXYMETHYL, 2, IMLOAZOLINDRE, DECOMPO. LARGER THAN 300DEGREES. SIMILAR REACTION WITH PARAFORMALDEHYDE IN THE PRESENCE OF PIPERIDINE IN MECH 4 HR GAVE SEPERCENT 4(5), METHYL, 5(4), PIPER ID INOMETHYL, 2, IMIDAZOLINONE, DECOMPO. SMALLER THAN 1,3, DIACETYL, 4(5), HETHYL, 5(4), BROMOMETHYL, 2, INIDAZGE INCHE AND PIPERIDINE. HYDROXYDEHYDRODETHIOBIOTIN AND PARAFORMALDEHYDE REFLUXED IN ETOH 3 HR GAVE HYDROXYDEHYDRODETHIOBIOTIN, DECOMPD. LARGER THAN 1,3,DIACETYL,4,(5), BROMOMETHYL, 2, IMIDAZOLINONE AND ACSK IN ME SUB2 CO DVERNIGHT GAVE 36PERCENT 1.3. DIACETYL, 4(5), (ACETYLTHICMETHYL) 2, IMIDAZOLINGNE, M. 49-51DEGREES. SIMILARLY WAS PREPD. THE 4(5), ME ANALOG, M. 67-8DEGREES AND 1,3, DIACETYL, 4,5, BIS(ACETYLTHIOMETHYL), 2, 1 MIDAZOLINONE, M. 1,3, DIACETYL, 4(5), (ACETYLTHIGHETHYL), 5(4), DELTA, CARBETHOXYVALEROYL), 2, IMIDAZGLINONE, M. 109-10DEGREES, WHICH WITH N, BRUMOSUCCINIMIDE IN REFLUXING CCL SUB4 GAVE IN 1 HR AN DIE, WHICH TREATED WITH ACSK, THEN WITH AQ. KMNO SUB4, GAVE AFTER FINAL HEATING 3 HK WITH AQ. HCL 1,3. DIACETYL, 4(5), (ACETYLTH LOMETHYL), 5(4), (CARBETHOXYAMYL), 2. IMIDAZOLINONE, OIL. A POSSIBLE SCHEME OF BIOGENESIS OF BIOTIN FROM INST . SERINE, GLYCINE AND DETHIOBIUTIN WAS DISCUSSED. ORG. KHIH. IM. ZELINSKOGO, MOSCOW, USSR. UNCLASSIFIED ्रात्वा स्वापना स्वापना स्वापना स्वापना । त्यां स्वापना । त्यां स्वापना । त्यां स्वापना स्वापना स्वापना स्वापन स्वापना स्वापना स्वापना स्वापना स्वापना । त्यां स्वापना । त्यां स्वापना स्वापना स्वापना स्वापना स्वापना स्वापन

Bionics

USSR

UDC 542.19:577.164.18

ZAVIVALOV, S. T., Doctor of Chemical Sciences, Institute of Organic Chemistry Imeni N. D. Zelinskiy, Academy of Sciences USSR

"Bionics and Organic Synthesis"

Moscow, Priroda, No 6, 1970, pp 62-65

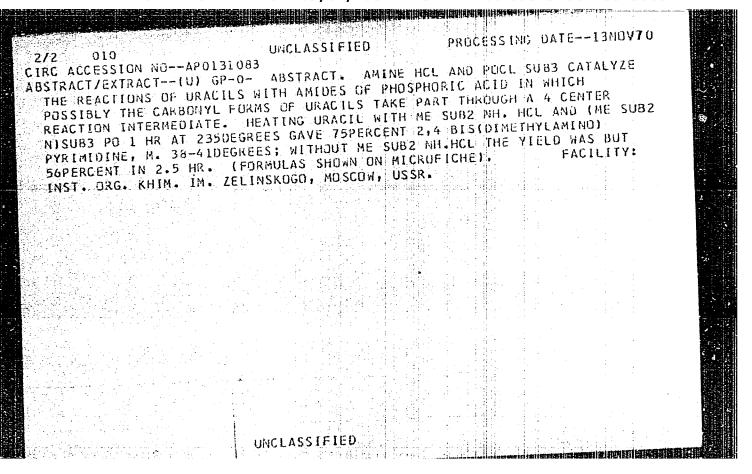
Abstract: The principles, concepts, and ideas of the rapidly evolving biological sciences have affected other scientific disciplines as well, particularly organic chemistry. A new scientific field has come into being, plo-organic chemistry, which has as a goal the modeling of living systems (biendes). The study of the capacity for life and the formation of organisms has occupied scientists and engineers in their research on the flight of birds and insects and the movement of fish and dolphins. Bionics as applied to organic chemistry relates to the study of the living cell, the growth of plants and anicels, the synthesis of living matter, from the simplest substances such as glycorin and acetic acid to the most complicated such as proteins, nucleic acids, and vitamins. Chemists have succeeded in Amthesizing important parts of naturally occurring alkaloids. Hydrocortisono, a powerful natural bioregulator synthesized in the advenal cortex, has been synthesized by chemists through a complicated reaction schome. Chemists can 1/2

USSR

ZAV'MIOV, S. I., Priroda, No 5, 1970, pp 62-65

also synthesize analogs of naturally occurring substances (a.g.) tubocuraria.

also synthesize analogs of naturally occurring substances (a.g.) tubocuraria.


Bionics has thus become an important field for the charist in the study of new Bionics has the develop-phenomena, the search for preparations of biological importance, and the development of new synthetic methods.

PROCESSING DATE--LINOVTO TITLE-REACTION OF URACILS WITH PHOSPHORIC ACID AMIDES -U-AUTHOR-(03)-ARUTYUNYAN, E.A., GUNAR, V.I., ZAVYALOV, S.I. COUNTRY OF INFO--USSR SOURCE-- 12V. AKAD. NAUK SSSR. SER. KHIM. 1970, (4), 904-9 DATE PUBLISHED ---- 70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--URACIL, PHOSPHORIC ACID, AMIDE, CHEMICAL REACTION

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--3004/0444 STEP NO--UR/0062/70/000/004/0904/0909

EIRC ACCESSION NO-APO131083 UNCLASSIFIED

"APPROVED FOR RELEASE: U9/U1/2001

1/2 010

UNCLASSIFIED PROCESSING DATE--L3NOV70 TITLE--DELTA AMINOLEVULINIC ACID HYDROCHLORIDE -U-AUTHOR-(03)-ARONDVA, N.I., MAKHOVA, N.N., ZAVYALOV, S.I. COUNTRY OF INFO--USSR SOURCE--U.S.S.R. 266,773 REFERENCE--OTKRYTIYA IZOBKET., PROM. OBRAZTSY, TOVAKNYE ZNAKI 1970, 47(12) DATE PUBLISHED--01APR 70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS-CHEMICAL PATENT, CHEMICAL SYNTHESIS, HYDROLYSIS, CARBOXYLIC ACID CHLORIDE CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3004/1811 STEP NO--UR/0482/70/000/000/0000/0000 CIRC ACCESSION NO-AA0132077 UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

CIRC ACCESSION NOAA ABSTRACT/EXTRACT(U) HYDROCHLORIDE (I) W SUCCINIC ACID CHLOR SUCH AS PICOLINE, W AND SEPN. OF I BY T		PROCESSING DATE13NOV70 MINOLEVULINIC ACID MENYL, 5, OXAZOLINE WITH ET IHE ALKYL PYRIDINE SERIES, SIS OF THE C ACYL DERIV. WITH ACETONE.
	UNCLASSIFIED	

007

1/2

PROCESSING DATE--230CT70

TITLE--FAVORABLE EFFECT OF GAMMA, PICOLINE ON C, ACYLATION OF

AUTHOR-(03)-ARONDVA, N.I., MAKHOVA, N.N., ZAVYALOV, S.I. MESSIVATION OF THE PARTY OF

COUNTRY OF INFO--USSR

SOURCE--IZV. AKAD. NAUK SSSR, SER. KHIM. 1970, (3), 724

DATE PUBLISHED ---- 70

SUBJECT AREAS--CHEMISTRY

TOPIC TAGS--PYRIDINE, BENZENE DERIVATIVE, ORGANIC AZOLE COMPOUND, STERIC

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1999/1883

STEP NO--UR/0062/70/000/003/0724/0724

CIRC ACCESSION NO--APO123671

UNCLASSIFIED

SAKAN NEEDEN EATING SEN MENTANDEN MINISTER MANAGEMENT BURGARAN

PROCESSING DATE--230CT70 UNCLASSIFIED 007 2/2 CIRC ACCESSION NO--AP0123671 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. FOR ACYLATION OF 2, PHENYL, 5, OXAZOLINONE, 4, METHYL, PYRIDINE, RATHER THAN THE 3, ISOMER (CARTER H. E., ET AL., 1953) WAS USED. THE FOLLOWING YIELDS WERE OBTAINED FROM THE ACYLATION RUN WITH INDICATED RCOCL (R SHOWN), RESP., IN 4. 3, AND 2, METHYLPYRIDINES AND IN PYRIDINE ITSELF: CH SUB2 CH SUB2 DET 35PERCENT, 8PERCENT, TRACES, 0; CH SUB2 CH SUB2 CO SUB2 ME, 54, 10, 0.0: AND N.C SUB15 H SUB31 34. 21. 0. TRACES. THE FAVORABLE ACTION OF THE 4, ISOMER IS ASCRIBED TO STERIC HINDRANCE AFFORDED BY IT TO THE COMPETING NUCLEOPHILIC ATTACK OF THE ANION OF THE OXAZOLINONE ON THE C ATOM OF THE ACYLPYRIDINIUM CATION. IM. ZELINSKOGO, MOSCOW, USSR. UNCLASSIFIED

ARUTYUNYAN, E. A., GUNAR, V. I., and ZAV: YALOV S. I. Institute of Organic Chemistry imeni N. D. Zelinskiy, Moscow, Academy of Sciences

"Peculiarities of the Reaction of Uracils and Phosphoric Acid Amides" Moscow, <u>Izvestiya Akademii Nauk SSSR</u>, <u>Seriya Khimicheskaya</u>, Vol 4,

Abstract: The authors studied conditions for direct amination of uracyl and related structures with phosphoric acid amides. The reaction gives high yields of 2,4-diaminopyrimidines when it is carried out at 215-21,00 for 10-00 min in the presence of traces of acids. out at 215-2400 for 10-90 min in the presence of traces of acids. Amine hydrochlorides and POCl3 may be used as catalysts. Uracils unsubstituted at the nitrogen atom, 2,6-dimethyl-4-hydroxypyrimidine, and hypoxanthine give smoothest reactions with 0:p(NR2)3(I). amides of phosphoric acid may vary in their alkyl substituents. The authors believe that the reaction of (I) with the amide function occurs as a 1,2-addition through a four center intermediate structure. The authors thank V. A. KORENEVSKIY for his spectrum research.

1/1

USSR

VDC 542.91 + 547.857

ARUTYUNYAN, E. A., GUNAR, V. I., and ZAV'YALOV, S. I., Institute of Organic Chemistry imeni N. D. Zelinskiy, Moscow, Academy of Sciences USSR

"New Synthesis Method for 6-Aminopurines"

Moscow, Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, Vol 4, Apr 70, pp 953-955

Abstract: A new synthesis of 6-aminopurines was developed by direct amination of hypoxenthine (I) or its derivatives with phosphoric acid amides. For example, (I) heated with 0:P(NH₂)₂0C₆H₅ at 235° gave adenine, m.p. > 300°C; (I) heated with 0:P(NHCH₂C₆H₅)₃ at 230° gave 6-benzylaminopurine, m.p. 205-206°; 9-benzylhypoxanthine 235° gave 6-benzylaminopurine, m.p. 205-206°; 9-benzylhypoxanthine (II) heated with 0:P(N(CH₃)₂)₃ at 200-225° gave 6-dimethylamino-9-benzylpurine, m.p. 180-182°; and finally 235° gave 6-anilino-9-benzylpurine, m.p. 180-182°; and finally xanthene heated with 0:P(N(CH₃)₂)₃ gave 2,6-bis-(dimethylamino)-xanthene heated with 0:P(N(CH₃)₂)₃ gave 2,6-bis-(dimethylamino)-purine, m.p. 233-237°.

1/1

27 -

USSR

NOVIKOV, M. N., PASHENTSEV, I. D. and ZAV'YALOV, V. A.

"Calculation of the Distribution of Pulse Voltage in a Network of Semiconductor Rectifiers in Series"

Sb. tr. Leningri In-t inzh. zh.-d. transp. (Leningrad Institute of Railroad Transportation Engineers -- Collection of Works), Issue 70, Abstract No 18355)

Translation: The problem of the effect of barrier capacitances of particular rectifiers on the character of the pulse voltage tion of pulse voltage distribution is considered. A method is developed for calcularectifiers which do not have protecting elements and equalizing elements. The results of the calculated and experimental data are compared. Four illustrations and five references. Summary

USSR

UDC: 621, 643, 002, 2 + 411, 4

ZERNOV, A. V., ZAV'YALCV V. E., INDYUKOV, A. F., IVANTSOV, V. YA., Ural NITI, Chelyabinsk; and SHCHEPKIN, E. V., MITROSHIN, S. S., Nefteprovodmontazh Trust, Ufa.

"Possibility of Automatic Double Welds of the Elbow Joints in Large Diameter Pipelines"

Moscow, Stroitel'stvo Truboprovodov, No 8, Aug 71, pp 15-17

Abstract: The Ural Pipe Industry Research Institute developed a method for producing automatic double-V welds under flux with an overhanging welding head in plates of 6-12 mm thickness with 2-2.5 mm gap.

1/2

USSR

ZERNOV, A. V., et al., Stroitel'stvo Truboprovodov, No B, Aug 71, pp 15-17

With this method the welding arc is stabilized by a magnetic field created by a solenoid concentric with the electrode. The solenoid winding is in series with the welding circuit. The magnetic field is controlled by varying the distance of the solenoid from the weld.

This method makes it possible to make the initial root weld either from inside or from outside in the elbow joint of a pipe.

Analysis of weld sections showed that the quality of the welds is adequate. The subject solenoids can be installed on existing welding heads. This will result in increased productivity and quality.

1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

UDC: 669.783.5:538.2

ZAV'YALOV, V. K., RADOVSKIY, I. Z., LEVIN, Ye. S., NVZOROVA, E. G., GEL'D, P. V., Sverdlovsk

"Magnetic Properties of Liquid Alloys of Germanium with Iron, Cobalt and Nickel"

Moscow, Izvestiya Akademii Nauk SSSR, Metally, No 6, 1973, pp 32-34.

Abstract: This article presents the results of investigation of the magnetic susceptibility of liquid Fe-Ge, Co-Ge and Ni-Ge alloys. The concentrationtemperature dependence of magnetic susceptibility was studied by the Faraday method in the 900-1700° C temperature interval. It was found that the Curie-Weiss law is followed in Fe-Ge melts where $N_{\mbox{Ge}}$ < 0.7, in Co-Ge melts where N_{Ge} < 0.45, and is not followed in Ni-Ge melts. The concentration dependences of effective magnetic moments per For Fe-Ge and Co-Ge alloys differ qualitatively. In the first case, the dependence of $\mu_{\mbox{eff}}$ on $N_{\mbox{Ge}}$ shows a minimum near N_{Ge} = 0.2, while in the second case μ_{eff} remains independent of concentration approximately up to N $_{Ge}$ = 0.15, then increases from 3.0 μ_B to 3.7 μ_B (at about 30 at. % Ge). 1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

UDC 629.7.063.7(088.8)

SKOTNIKOV, P. A., SALTAYS, E. A., SALUGIN, V. K., GRAYFER, N. P., ZAV VALOV V. I.

"Bypass Valve for Aircraft Engine Lubrication System"

USSR Authors' Certificate, Class B 64 d 33/00, F 16 k 5/00, No. 305104, Announced 3 February 1970, Published 10 September 1971 (from RZh-Aviatsionnyye i raketnyye dvigateli, No 4, Apr 72, Abstract No 4.34.66 P)

Translation: A bypass valve for an aircraft lubrication system according to Authors Certificate No. 295712 (see PZh-Aviatsionnyye i raketnyye dvigateli, 1971, 12.34.42) is patented but is distinguished by the fact that to reduce hydraulic resistance the cavity of the shut-off element is separated by a partition into two chambers, radial slits in which have opposite angular displacement relative to the corresponding slits in the overlapping bushing separated from the bimetallic spiral by a cylindrical screen. 2 illi, Resume.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

Lubricants and Lubrication

USSR

UDC 669.24'14'715-419:621.771

KHOREV, M. I., and ZAV'YALOV, YU. I.

"Eliminating Metal Gathering on the Rolls in Rolling Nickel-Steel-Aluminum Strip"

Moscow, Tsvetryye Metally, No 3, Mar 7C, pp 52-54

Abstract: A description is given of a method of rolling with various pass reductions using various technological lubricants in order to eliminate metal gathering on the rolls. A table shows 5 sets of parameters for pass reductions, weldability ratios, and metal gathering on rolls; another table gives the compositions of 9 lubricants, their characteristics, and rolling results. Lubricant No 3 was found best in eliminating metal gathering. The subsequent rolling is done on a cluster mill 160/350x450: 0.95--0.65--0.5--0.38--0.24--0.20 mm using lubricants Nos. 5 and 6, since they burn out best on annealing. The strip is annealed in a compartment-type electric furnace for 12 hrs., the tape temperature being 535+5°C.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

1/2 032

UNCLASSIFIED TITLE--PIEZORESISTANCE AFFECT IN SBSI -U-

PROCESSING DATE--04DEC70

AUTHOR-(03)-ZAVYALOVA, A.M., ZAKS, P.L., SYRKIN, L.N.

COUNTRY OF INFO--USSR

SOURCE-FIZ. TVERD. TELA 1970, 12(5), 1580-2

DATE PUBLISHED ---- 70

SUBJECT AREAS-CHEMISTRY, MECH., IND., CIVIL AND MARINE ENGR, PHYSICS

TOPIC TAGS--ANTIMONY, IODIDE, SINGLE CRYSTAL, SULFUR COMPOUND, PHASE TRANSITION, HYDROSTATIC PRESSURE, HIGH PRESSURE EFFECT

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/0962

STEP NO--UR/0181/70/012/005/1580/1582

CIRC ACCESSION NO--APO133048

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

2/2 032 CIRC ACCESSION NO--AP0133048 UNCLASSIFIED PROCESSING DATE--04DEC70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. THE EFFECT OF HYDROSTATIC PRESSURE (1-1000 ATM) WAS INVESTIGATED OF DARK COND. OF SOST CLOSE TO THE POINT OF THE PHASE TRANSITION ON POLYCRYST. SPECIMENS AS WELL AS ON SINGLE CRYSTALS. FROM RESULTS OF THE MEASUREMENTS OF THE PRESSURE DEPENDENCE OF SP. RESISTANCE, THE COEFF. OF PIEZORESISTANCE AT HYDROSTATIC PRESSURE WAS CALCO., WHICH IS A COMBINATION OF LONGITUDINAL AND TRANSVERSE COEFFS. IN THE REGION OF THE PHASE TRANSITION, A SHARP MAX. WAS OBSO. IN THE DEPENDENCE OF THIS COEFF. ON TEMP. WITH INCREASED PRESSURE, THE MAX. IS SHIFTED TOWARDS LOWER TEMPS. AND ITS MAGNITUDE DECREASES MONOTONICALLY, BUT STILL REAMINS LARGE EVEN AT TEMPS. FAR FROM THE PHASE TRANSITION. PRESSURE DERIVS. OF THE ENERGY OF THE ACTIVATION AND THE HIGH OF THE FORBIDDEN BAND HAVE MAX. AT THE PHASE TRANSITION WHICH WITH INCREASED PRESSURE ARE SHIFTED TOWARD LOWER TEMPS. UNCLASSIFIED

USSR

UEC 546.48 23:539.238

SVECHNIKOV, S. V., SHTRUM, YE. L., KLOCHKOV, V. P. ZAV'YALOVA, L. I and TORCHUN, N. M., Institute of Semiconductors, Academy of Sciences USSR

"Monocrystalline Layers of Cadmium Selenide"

Moscow, Izvestiya Akademii nauk SSSR, Neorganicheskiye materialy, Vol 7,

Abstract: This paper concerns the study of the specific properties of a single-crystal layer grown on a substrate. The experimental layer of hexagonal and a mixture of hexagonal and cubic modifications was produced by vacuum deposition of cadmium selenide on mica substrates in a quasi-closed space. The morphology of the deposited layer indicates that the surface growth of cadmium selenide layers is formed by hexagonal pyramids or triangles and hexagons. Three basic types of pyramids are observed: pyramids with pointed apexes and flat lateral faces, stepped pyramids, and truncated pyramids. A correlation was revealed between the dimensions of the grown shapes and their electric conductivity. Both the resistivity and photosensitivity of the layers increase with the increasing cross section of the pyramids. The photosensitivity of single-crystal layers comprising cubic and hexagonal modifications of CdSe is higher than that of layers with hexagonal modifications. (1 illustrations, 10 bibliographic references)

- 61 -

Radiobiology

USSR UDC 616.833-001.28-003.93.616.71-008.46-089.843.611-018.461

ZAYACHKOVSKIY, A. G., Chair of Nervous Diseases, Ternopol' Medical Institute, Ternopol'

"Effect of the Transplantation of Preserved Autologous Bone Marrow on Nerve Regeneration in Combined Trauma"

Kiev, Vrachebnoye Delo, No 5, May ?1, pp 119-121

Abstract: Rabbits were irradiated with x-rays in a dose of 600 r. Immediately after irradiation, neurotomy of the left sciatic nerve was carried out, followed by neurorrhaphy. Twelve or 144 hrs after irradiation, the animals received an intravenous injection of autologous preserved bone marrow in an amount corresponding to 3 - 5 x 105-7 nuclear cells. The bone marrow was removed by suction from the femur and tibia and preserved at minus 78° in a 15% solution of dimethylsulfoxide. Transfusion of the bone narrow 12 hrs after irradiation resulted in a higher rate of survival of the animals and produced more effective regeneration, resorption of decay products, neurotization, and myelinization of nerve fibers than transfusion 144 hrs after irradiation.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

unc [537.226+537.311.33]:[537+535]

BERCHA, D. M., ZAYACHKOVSKIY W. P., SLIVKA, V. YU, LOVGA, I. V., TURYANITSA, I. D., AND CHEPUR, D. V.

"Effect of Piezoresistance in BiSeI Crystals"

V sb. Poluprovodn. elektronika (Semiconductor Electronics -- Collection of Works), Uzhgorod, 1971, pp 53-58 (from RZh-Fizika, No 10, Oct 71, Abstract No 10YE651 by G. G. RUDOVOL)

Translation: An investigation was made of the effect of piezoresistance and electrical conductivity in acicular BiSeI single crystals, as well as their temperature dependence in the 270-115° K temperature range. It was established that the piezoresistance coefficient is complexly (peakwise) temperature-dependent. It is suggested that the semiconductor has several donor levels, which are depleted in turn. This results in several peaks, dependent on the number of impurity levels. However, the peak found in the 130-140° K temperature region is due to a phase transition of the second kind. In the 230° K region the piezoresistance does not involve a phase transition but is due to a change in the activation energy of impurity levels. Such an assumption is confirmed by the fact that in experimental studies a shift in the minimum is observed from specimen to specimen, while the minimum remains constant at 1-133° K.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

oles la sultivis de la compositación de la compositación de la compositación de la compositación de la composit En en experiención de la compositación de la compositación de la compositación de la compositación de la compo USSR

UDC 616.831:616.936]-07

ZAYACHKOVSKIY, S. M., Chair of Infectious Diseases, L'vov Medical Institute "Cerebral Forms of Malaria"

Kiev, Vrachebnoye Delo, No 12, 1971, pp 104-105

Abstract: From 1964 to 1966 47 patients with cerebral malaria were observed in a hyperendemic region [unspecified] of malaria outside the Soviet Union. The 42 males and 5 females ranging in age from 15 to 50 developed the characteristic cerebral symptoms 2 to 20 days after onset of the disease together with sommolence (15), sopor (21), or coma (11). Almost all exhibited the meningeal syndrome, various neurologic disturbances, and the typical symptoms of malaria. Therapy was generally initiated with intramuscular injection of the schizonticide chloroquine diphosphate. Other agents administered included glucose, polyvinylpyrrolidome, norepinephrine, nikethamide (cordiamine), ascorbic acid, calcium gluconate, cocarboxylase, and hydrocortisone. Lumbar punctures aided 17 patients with symptoms of meningeal irritation. The prognosis for cerebral malaria is always guarded, especially for those in a coma. Five of the 111 who went into a coma died, whereas the other 36 recovered.

- 44 -

1

USSR

VDC 621.315,592

DOVGOSHEY, N. I., FIRTSAK, Yu. Yu., TURYANITSA, I. D., ZAYACHKOVSKIY, V. P. and MEL'NICHENKO, T. N.

"Production and Some Physical Properties of SbSI and SbSeI Films"

V sb. Poluprovodn. elektronika (Semiconductor Electronics -- Collection of Works), Uzhgorod, 1971, pp 66-70 (from RZh-Elektronika i yeve primeneniye, No 9, September 1971, Abstract No 9B165)

Translation: The films were produced by the method of discrete explosive vaporization of source material in a unit mounted at the base of the UVR-2 general-purpose vacuum station. Single crystals obtained from the gaseous phase were used as the source material. Vaporization was conducted at a pressure of 10⁻⁴ mm of mercury on cold and hot mica and glass substrates. X-ray studies showed that specimens deposited on the cold substrates are quasi-morphous, and films obtained on substrates heated to 150-160°C were polycrystalline. Films deposited on substrates heated to 270°C display an excess of SbS3 and Sb2Se3, respectively. Measurements of the electrical conductance were made on films obtained on mica substrates heated to 150-160°C. The temperature dependence of the electrical conductivity for a SbSI film is characterized by a low-temperature linear section with an activation energy 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

DOVGOSHEY, N. I., et al., Poluprovodn. elektronika (Semiconductor Electronics -- Collection of Works), Uzhgorod, 1971, pp 66-70 (from RZh-Elektronika i yeye primeneniye, No 9, September 1971, Abstract No 8B165)

of 0.08 ev and two sections of linear dependence in the region of high temperatures (0-100°C) with activation energies of 0.57 and 0.68 ev. For SbSeI the temperature dependence of electrical conductivity has two linear sections with activation energies of 0.96 and 0.98 ev. The width of the forbidden band Δ E = 1.94 ev is determined by the spectral dependence of the absorption coefficient (K) for SbSI films at room temperature. The absorption edge K is a straight line in the case of the function $K^{1/2} = f(h\nu)$. The function $K^{1/2} = f(h\nu)$ plotted for SbSeI gives a width of the forbidden band equal to 1.73 \pm 0.05 ev and indicates the presence of interzonal indirect junctions. 9 ref. I. I.

2/2

- 90 --

USSR

UDC 539.374

SEVERDENKO, V. P., STEPANENKO, A. V., ZAYASH, I.V.

STOCKET MALL WASHING

"Effect of Intensity of Ultrasonic Vibrations on Certain Parameters of the Rolling Process"

V sb. Plastich. deformatsiya i obrab. met. davleniyem (Plastic Deformation and Pressure Working of Metals--collection of works), Minsk, "Mauka i tekhn.", 1969, pp 46-50 (from RZh-Mekhanika, No 3, March 1970, Abstract No 3V419)

Translation: A study has been made of the effect amplitude has on reducing forces and increasing reduction and drawing when strips are rolled from MZ copper with the superposition of ultrasonic vibrations. It is shown that the efficiency of the action of ultrasonic vibrations rises as the intensity is increased and as the degree of reduction is diminished.

Resume

1/1

UDC 533.69

USSR

FERENETS, V. A., and ZAYATS, P. K., Kazan' Order of the Labor Red Banner Aviation Institute

"A Pneumoelectric Monitor for Aerodynamic Angles"

USSR Author's Certificate No 366121, Filed 19 Jan 70, Published 16 Jan 73 (from Otkrytiya, Izobreteniya, Promyshlennyye Obraztsy, Tovarnyye Znaki, No 7, Mar (a) 73, Claim No 1400485/40-23)

- Translation: 1. A pneumatic monitor for aerodynamic angles containing a cylindrical nozzle, placed perpendicular to the unperturbed incoming flow with two series of inlets warmed by the electrical current of a semiconductor thermistor inserted in the measuring circuit, distinguished by the fact that in order to increase the reliability of operation and decrease the pressure pulsation in the inlets, a flow chamber connected with the inlets is introduced in the pneumatic scheme of the transducer.
- 2. The pneumoelectric transducer in paragraph 1, is distinguished by the fact that, in order to increase the accuracy of measurement, capsules of thermo-anemometric transformers, consisting of a bead thermistor, a nozzle and an insulating sleeve, are mounted in the channels at the chamber outlet.

3. The pneumoelectric transducer in paragraph 1 is distinguished by the

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

FERENETS, V. A. and ZAYATS, P. K., USSR Author's Certificate No 366121, Filed 19 Jan 70, Published 16 Jan 73

fact that, in order to increase the range of aerodynamic angles measurable, a servo system is introduced, controlled by a signal of mismatch with the output of the measuring scheme of the transducer, providing such a position of the nozzle relative to the air flow, that equality of pressure in the inlets is achieved.

2/2

- 130 -

USSR

VAVILOV, V. S., GUZEYEV, N. V., ZAYATS, V. A., KONONENKO, V. L., MANDEL'SHTAM, T. S., and MURZIN, V. N.

"The Spectra of Photo Excitation of Free Excitons by Submillimeter Radiation in 'Ultra Pure' Germanium"

Moscow, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 17, No 9, 5 May 73, pp 480 - 483

Abstract: Recent experiments have been successful in the study of characteristics of excitons in the long-wave infrared band. Absorption in the region of 2 - 5 MeV was observed in 1971. Subsequent experiments with a backwards wave tube recorded absorption by free excitons in germanium of a triplet with a maximum at 3.42 MeV. In both cases the germanium had residual impurities of $10^{12} - 10^{13} \, \text{cm}^{-3}$, which does not completely exclude possible impurity effects. The authors have made tests at impurity levels no greater than $5 \cdot 10^{10} \, \text{cm}^{-3}$ with a backward wave tube at 340 - 455 and 510 - 730 micrometers, as well as with a diffraction spectrometer at the far infrared region of 60 - 700 micrometers. The experiments were at $1.5 - 4.2 \, \text{degrees K}$.

USSR

VAVILOV, V. S., et al., Moscow, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 17, No 9, 5 May 73, pp 480 - 483

Results indicate that the binding energy of the exciton in the ground state is 3.7 Mev and that the distance between the lowest two states is 0.7 Mev, a result which agrees fairly well with theoretical predictions and with measurements in the interzonal transition region. The narrowness of the absorption lines measured indicates that kinetic energy of the excitons does not substantially contribute to broadening these lines. The broadness is apparently related to interactions between the excitons and null oscillations of the crystal lattice.

2/2

- 24-

USSR

GUSEV, B. V., ZAZIMKO, V. G., ZAYATS, Yu. L., OSIPOV, B. A.

"Graphic Analysis in the Study of Mathematical Models"

Graficheskiy Analiz pri Issledovanii Matematicheskikh Modeley [English Version Above], Dnepropetrovsk, 1972, 8 pages (Translated from Referativnyy Zhurnal Kibernetika, No 6, 1973, Abstract No 6V710 DEP, by the authors).

Translation: Graphic analysis of mathematical models of technological processes is applied. It is demonstrated using two examples, determination of the optimal parameters of vibration and composition of concrete.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

UDC: 621.319.4

ZAYATS, V. K., SIDOROV, G. I., ALEKSANDROV, Yu. A., PALAGIN, V. A.

"An Installation for Testing Capacitors on Audio Frequencies"

Pribory i sistemy avtomatiki. Resp. mezhved. nauch.-tekhn. sb. (Devices and Systems for Automation. Republic Interdepartmental Scientific and Technical Collection), 1970, vyp. 14, pp 45-48 (from RZh-Radiotekhnika, No 5, May 71, Abstract No 5V330)

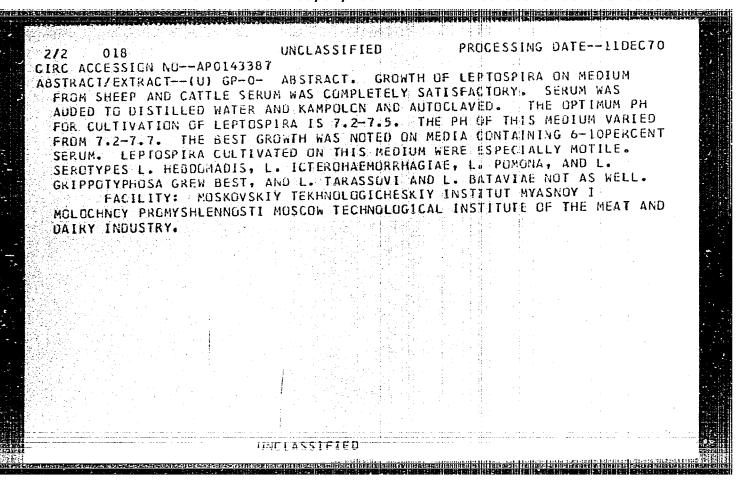
Translation: The authors describe an installation for reliability testing capacitors in the acoustic frequency range. The unit is a low-frequency power oscillator operating into a tank circuit whose capacitive element is a test group of capacitors. Test frequencies are 100, 200, 400, 500, 1,000, 2,000, 5,000 and 10,000 Hz. The maximum capacitance of the group of test 10,000 Hz. The installation can be used for long-term tests. Two illustrations, bibliography of two titles. Resume.

1/1

. KK .

Antennas

USSR


ZAYCHENKO, A. , Radio Physics Engineer

"Speak Stars!"

Moscow, Radio, No 8, Aug 71, pp 8-9

Abstract: The article is a description of the UTR-2 Radiotelescope built in Grakovo in the Khar'kovskaya Oblast. The telescope covers an area of 15.5 hectares (about 38.3 acres). A bird's eye view of the antenna reveals a huge letter "T" with dimensions of 1860 x 900 meters. The thickness of the letter is 51 meters, and it consists of 2040 half-wave dipoles set up in a column six abreast. These dimensions give an equivalent electrical area of 150,000 sq. m. at the zenith for reception of extremely weak radio sources located tens of billions of light years from the earth. The "T" shape gives practically the same resolution as a "cross" antenna with much fewer elements. The dipoles of the antenna are fixed, and the "beam" of the radio telescope is controlled electrically by time delay lines in the form of sections of coaxial cable. The control system is described as well as the phasing circuit. A modulation method is used for accumulation of useful signals with chart-recorder registration. A time system of phasing is used which makes the parameters of the installation independent of frequency.

PK PK	UCESSING DATE11 DEC70
UNCLASSIFIED PR 72 618 TLEAUTOCLAVED NUTRIENT MEDIUM FOR CULTURING LERI TLEAUTOCLAVED NUTRIENT MEDIUM FOR CULTURING LERI	OSPIKA TO
CULTRY OF INFO-USSR	
EURCEVETERINARIYA, 1970, M.	
ATE PUBLISHED70	SCIENCES
SUBJECT AREASAGRICULTURE, BIOLOGICAL AND MEDICAL SUBJECT AREASAGRICULTURE, BIOLOGICAL AND MEDICAL TOPIC TAGSLEPTOSPIRA, CULTURE MEDIUM, COMMERCIAL	ANIMAL, BLOOD SERUM
CCPIC TAGS—LE	
CENTROL MARKING-NO RESTRICTIONS	202/0109/0110
DECUMENT CLASSUNCLASSIFIED DECUMENT CLASSUNCLASSIFIED PROXY FICHE NOF070/605049/E04 STEP NOUR/0346	5/70/000/003/010//
CIRC ACCESSION NO-APOL43387 UNCLASSIFIED	

1/2 016 UNCLASSIFIED PROCESSING DATE--27NOV70
TITLE--A MODIFIED METHOD OF DIAGNOSING LEPTOSPIROSIS IN SWINE -U-

AUTHOR-(02)-LYUBASHENKO, S.YA., ZAYCHENKO, A.S.

COUNTRY OF INFO--USSR

SOURCE--VETERINARIYA, 1970, NR 2, PP 98-100

DATE PUBLISHED ---- 70

SUBJECT AREAS -- BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--LEPTOSPIROSIS, HOG, COMPLEMENT FIXATION TEST, DIAGNOSTIC

CONTROL MARKING -- NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3003/1230

STEP NO--UR/0346/70/000/002/0098/0100

CIRC ACCESSION NO--APO130240

UNCLASS OF LED

2/2 016 UNCLASSIFIED PROCESSING DATE--27NOV70 CIRC ACCESSION NO--APO130240 ABSTRACT/EXTRACT--(U) GP-0-ABSTRACT. A NEW METHOD FOR DIAGNOSING LEPTOSPIROSIS OF SWINE IS BASED ON THE PROLONGED COMPLEMENT FIXATION REACTION WITH SWINE SERUM SINGLE ANTIGENS OR POLYANTIGEN. A POLYANTIGEN CONTAINING SERUTYPES L. GRIPPOTYPHOSA, L. POMONA, L. ICTEROHAEMORRHAGIAE, L. TARASSOVI, L. HEBDOMADIS, AND L. BATAVIAE WAS SPECIFIC IN THE PROLONGED COMPLEMENT FIXATION REACTION AND DID NOT SHOW ANTICOMPLEMENT PROPERTIES IN A DOUBLE TITRATED DOSE. A TOTAL OF 4.9 PERCENT MORE POSITIVE AND DOUBTFUL REACTIONS AMONG ANIMALS WERE DETECTED BY THIS METHOD THAN WITH THE STANDARD COMPLEMENT FIXATION TEST. THE PROLONGED COMPLEMENT FIXATION TEST WAS ALSO BETTER FOR DIFFERENTIAL DIAGNOSIS OF ANIMALS WITH LEPTOSPIROSIS FROM ANIMALS CONVALESCING FROM THE DISEASE THAN THE COMMONLY EMPLOYED MICROAGGLUTINATION AND LYSIS FACILITY: MOSCOW TECHNOLOGICAL INSTITUTE OF THE MEAT AND DATRY INDUSTRY.

USSR

UDC 665.4:542.943

NOVOSELOVA, L. V., BABELI, V. G., ZAYCHENKO, L. P., PROSKURYAKOV,

"Synergism of Mixtures of Alkylphenol and Phosphonate Anti-Oxidants in the Process of Oxidation of White Paraifin Oil"

Leningrad, Zhurnal prikladnov khimii, Vol 64, No 10, Oct 71, PP 2349-2352

Abstract: This paper deals with new antioxidants, their mixtures and synergistic properties. Alkylphenols are the basic anti-Oxidants; thiocarbonates, sulfides, phosphites and phosphonates are the synergists which enhance the inhibiting action of alkylphenols. An attempt to explain the mechanism and factors responsible for the synergistic effect is described here. The experiment involved dialkylphosphonate (as the synergist) and alkylphenol (antioxidant). Mixtures of both were tested on white paraffin oil as a readily oxidizable medium. The total concentration of the inhibitors in the oil was constant and equal to 0.005 mol/1. Only the "phosphite-phenol" ratio was varied. Binary diagrams were plotted on the basis of the test data for

USSR .

NOVOSELOVA, L. V., et al, Zhurnal prikladnoy khimii, Vol 64, No 10, Oct 71, pp 2349-2352

each individual component and of the phosphite-phenol mixtures as functions of concentration. The results show ionol:MB-1 in ratios of 0.001:0.004 and 0.002:0.003 to have the highest synergistic effect. The maximum induction period exceeded that of the most effective inhibitor, at a concentration of the latter equal to the total, by a factor of 2.0-2.5. When used independently, the antioxidants were not very effective. In mixtures with thiophosphonate they inhibit oxygen absorption, with the effect directly proportional to the content of thiophosphonate. Curves are shown to demonstrate the kinetics of oxygen absorption during oxidation of paraffin oil in the presence of different mixtures of inhibitors at 17500; the induction period of paraffin oil oxidation as a function of phosphonate: ional molar ratio.

2/2

61.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

UDC: 536.2:536.63

PELETSKIY, V. E., CHEKHOVSKOY, V. Ya., SOVITSKIY, Ye. M., TYLKINA, M. A., AMASOVICH, Ye. S., ARSKAYA, Ye. P., ZAYCHENKO, V. M., PETUKHOV, V. A., Institute of High Temperatures of the Academy of Sciences of the USSR, the USSR

"Some Physical Properties of a New Alloy in the Nickel-Rhenium-Molybdenum System"

Moscow, Teplofizika Vysokikh Temperatur, Vol 11, No 2, Mar/Apr 73, pp

Abstract: The authors study the heat conduction, coefficient of thermal expansion and resistivity of an alloy in the nickel-rhenium-molybdenum system containing 10 vt.% Re and 15 vt.% Mo. Curves are given showing the temperature dependence of the measured parameters between 100 and 1000°C. The results indicate structural transformation of the alloy in the solid state. Analysis points to the possibility of formation of the so-called K-state observed in the region of solid solutions of the nickel-chromium system with more than 16% chromium. However, a final explanation of the 1/1

- 5? -

USSR

VDC 533.697

ABOLTIN, E. V., ZAYCHENKO, Ye. N.

"Calculation of Turbine Flow in a Bladeless Diffuser of a Centrifugal Compressor Considering Compressibility"

Tr. Tsentr. n.-i. avtomob. i avtomor. in-ta (Works of the Central Scientific Research Automobile and Automobile Motor Institute), 1972, No. 138, pp 15-35 (from RZh-Mekhanika, No 3, Mar 73, Abstract No 3B379)

Translation: A steady-state axisymmetric turbulent flow of gas in a bladeless diffuser of a centrifugal compressor is analyzed considering such characteristics as the three-dimensional character of the flow, the absence of a potential nucleus and the heterogeneity of the flow over the profile of the channel. Relationships for calculating the coefficient of the decrease in the velocity circulation, the average angle of flow and the average static pressure were calculated by integrating the differential equations of motion. It was shown that the meridional component of the tangent stress has a negligibly small effect on losses to friction in a bladeless diffuser in the range $b_2 \geq 0.04$ and $\alpha_2 \leq 30^\circ$. The calculations of the coefficient of the decrease in the

1/2

USSR

ABOLTIN, E. V., ZAYCHENKO, Ye. N., Tr. Tsentr. n.-i. avtomob. i avtomor. in-ta, 1972, No. 138, pp 15-35

circulation of velocity are compared with data obtained by a calculation by the formulas of K. Pfleyderer, G. N. Den and Val'denatstsi. The comparison showed that consideration of the additional factors affecting the flow in the diffuser leads to a decrease in this coefficient. Comparison of the computational results and experimental data indicate the sufficient accuracy of the computational method for determining the surrounding velocity component and the angle of flow over a wide range of modes with respect to the flow angle $(10^{\circ} \leq \alpha_2 \leq 40^{\circ})$ and the Mach number $(\text{M}(c_2) \leq 0.8)$. It is also shown that the use of the computations of the average velocity in calculating total pressures on the basis of static pressure measured on both walls of the diffuser ensure a high accuracy in determining the average total pressure. One can say, starting from this, that a similar method for determining the total pressure can be used in testing a compressor to evaluate the effectiveness of elements of the flow portions. 7 ref. Authors' abstract.

2/2

- 23 --

UDC 533.697

ABOLTIN, E. V., ZAYCHENKO, Yu. N.

"Calculating the Potential Gas Flow in a Bladeless Diffuser of a Centrifugal Compressor"

Tr. Tsentr. n.-i. avtomob. i avtomor. in-ta (Works of the Central Scientific Research Automobile and Automobile Motor Institute), 1972, No. 138, pp 9-14 (from RZh-Mekhanika, No 3, Mar 73, Abstract No 3B377)

Translation: A method is proposed for calculating the potential flow of a gas in a bladeless diffuser of a centrifugal compressor which makes it possible to determine the angle of the flow and the degree of rise in static pressure directly from graphs, given the initial conditions at the input to the diffuser. A method is also proposed for calculating the width of the bladeless diffuser for a given distribution of the degree of rise in static pressure in the radial direction. 5 ref. Authors' abstract.

1/1

USSR UDC 533.697

ABOLTIN, E. V., ZAYCHENKO, Yu. N.

"Study of Flow in a Bladeless Diffuser With Varying Wall Roughness"

Tr. Tsentr. n.-i. avtomob. i avtomor. in-ta (Works of the Central Scientific Research Automobile and Automobile Motor Institute), 1972, No. 138, pp 3-8 (from RZh-Mekhanika, No 3, Mar 73, Abstract No 3B378)

Translation: The effect of sand roughness on flow in a bladeless diffuser was obtained as a function of the coefficient of losses with respect to the relative roughness as the result of a study. This relationship indicates the rapid rise in losses in the diffuser with an increase in roughness. It was shown that an increase in roughness leads not only to a growth in losses to friction but also to an intense rise in the magnitude of reverse radial currents. An approximate evaluation of the effect of the rise in the class of the cleanness of the surface of the diffuser walls on the efficiency of the compressor is given on the basis of the data obtained. Authors abstract.

1/1

70 -

USSR

UDC 519.24

ZAYCHENKO, YU. P.

"On an Evaluation of Parameters of a Nonstationary Process of a Single Class"

Vestn. Kiyev. politekhn. in-ta. Ser. avtomatiki i elektropriborostr. (Herald of the Kiev Politechnic Institute, Automation and Electrical Instrument-making Series), No. 8, 1971, pp 71-73 (from Referativnyy Zhurnal -- Matematika, No. 9, Sep 71, Abstract No. 9V259)

Translation: The problem of evaluating the parameters of a non-stationary random process whose characteristics drift according to an unknown time law is examined. A two-state algorithm of stochastic approximation is proposed for its solution. The first stage is the usual stochastic approximation procedure, and the second is a prediction method based on the Kolmogorov-Gabor formula and is intended to isolate the trend (drift law). The evaluation of the trend found is used in the first-stage algorithm in the next step.

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

UNCLASSIFIED PROCESSING DATE--090CT70
TITLE--RESULTS OF OBSERVATION OF SPRING RESTRUCTURING OF CIRCULATION IN
THE SOUTHERN HEMISPHERE USING METEOROLOGICAL ROCKETS, SPRING
AUTHOR-(03)-GAYGEROV, S.S., ZAYCHIKOV, B.P., KALIKHMAN, M.YA.

COUNTRY OF INFO--USSR

SOURCE—CENTRAL AEROLOGICAL OBSERVATORY; MOSCOW, IZVESTIYA AKADEMII NAUK SSSR, FIZIKA ATMOSFERY I OKEANA, VOL VI, NO 4, 1970, PP 381-387 DATE PUBLISHED----70

SUBJECT AREAS—ATMOSPHERIC SCIENCES, MISSILE TECHNOLOGY, MECH., IND., CIVIL AND MARINE ENGR
TOPIC TAGS—METEOROLOGIC RUCKET, ATMUSPHERIC CIRCULATION, OCEANUGRAPHIC SHIP, STRATOSPHERE, MESUSPHERE/(U)A I VOYEYKOV SHIP

CONTROL MARKING-NO RESTRICTIONS

DUCUMENT CLASS-UNCLASSIFIED PROXY REEL/FRAME-1994/0364

STEP NO--UR/0362/70/006/004/0381/0387

CIRC ACCESSION NU-APO114657

UNCLASSIFIED ...

kukista 1906. Kinga interasi peranturi peranturi mendilikini milikan ini bibi kulin milikan mengang sang sang sang perantuk Kinga di basa da basa

PROCESSING DATE--090CT70 UNCLASSIFIED CIRC ACCESSION NO-APOLIA657 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. DURING THE 18TH VOYAGE OF THE RESEARCH VESSLE "A. I. VOYEYKOV" A DETAILED STUDY WAS MADE OF THE ATMOSPHERE USING RADIOSONDES AND METEOROLOGICAL ROCKETS IN THE INDIAN OCEAN. THE RESULTS OF THESE OBSERVATIONS WERE CHARACTERISTIC FOR SUMMER CONDITIONS IN THE MIDDLE LATITUDES WITH EASTERLY WINDS IN THE STRATOSPHERE AND A LOW TEMPERATURE IN THE MESOSPHERE. DATA AGREE RATHER WELL WITH THE COSPAR STANDARD ATMOSPHERE CIRA-1965. REGULAR RADIOSONDE OBSERVATIONS WERE MADE THREE TIMES PER DAY DURING THE ENTIRE VOYAGE. ROCKET SOUNDING YIELDED TEMPERATURE DATA TO AN ALTITUDE OF ABOUT 80 KM AND WIND DATA TO 50-55 KM. THE OBSERVED CHARACTERISTIC PROCESSES ARE DESCRIBED: WARMING IN THE UPPER STRATOSPHERE IN THE 500EGREES LATITUDE RANGE, REVERSAL OF THE HORIZONTAL TEMPERATURE GRADIENT, CHANGE IN ALTITUDE OF THE STRATOPAUSE, CHANGE IN VELOCITY OF STRATOSPHERIC JET STREAMS AND DISPLACEMENT OF THE STRATOSPHERIC ANTICYCLONE SITUTATED OVER THE SOUTHERN PART OF THE OCEAN IN THE DIRECTION OF THE ANTARCTIC CONTINENT. FOR EXAMPLE, THE OBSERVATIONS FOR THE FIRST TIME DISCLOSED STRONG STRATOSPHERIC WARMING IN THE ZONE THE REGION OF WARMING CORRESPONDS 45-55DEGREESS AT ALTITUDES 30-45KM. TO CURRENT CONCEPTS CONCERNING THE INITIAL STAGE OF SPRING RESTRUCTURING OF STRATOSPHERIC CIRCULATION WHICH INDICATE THAT THE WARMINGS FIRST ARE DETECTED AT HIGH LEVELS AND IN THE RELATIVELY LOW LATITUDES AND THEN ARE IN THE SOUTHERN HEMISPHERE THE PROPAGATED DOWNWARD AND POLEWARD. MAXIMUM ZONE CONTENT IS AT 50-55DEGREESS.

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

CIRC ACCESSION NOAPOI ABSTRACT/EXTRACTIT MA OZONE LAYER IN THE RE					
FACTUR FOR THE FURTHE	R DEVELOPMENT	NV TUE DANG	DAGATION OF	RIDGES OF	
PROCESS. THIS PROCES ANTICYCLONES SOUTHWAS OF THE FILLING POLAR	VI CO. 143 1 Late 1 1 1	W 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	344412 34112 01	(1) (D) (1) (1) (1) (1)	IF 210N
OF THE FILLING PULAR ANTARCTICA.					
				•	
					·
					·
					•
NAMES OF STATES	:				

UNCLASSIFIED PROCESSING DATE-300CT7
TITLE-VERTICAL DISTRIBUTION OF THE MAIN METEOROLOGICAL PARAMETERS AND
LARGE SCALE PROCESSES IN THE STRATOSPHERE AND MESOSPHERE -UAUTHOR-(05)-GAYGEROV, S.S., ZAYCHIKOV, B.P., KALIKHMAN, M.YA., SEDOV,
V-YE., TARASENKO, D.A.
COUNTRY OF INFO-USSR

SOURCE—COSPAR, PLENARY MEETING, 13TH, LENINGRAD, USSR, MAY 20-29, 1970, PAPER, 42P

DATE PUBLISHED————70

SUBJECT AREAS -- ATHOSPHERIC SCIENCES

TGPIC TAGS--STRATOSPHERE, MESOSPHERE, VERTICAL PROFILE, TEMPERATURE, ATMOSPHERIC CIRCULATION, METEORGLOGIC ROCKET, OROGRAPHY

CONTROL HARKING-NO RESTRICTIONS

PROXY REEL/FRAME-3001/0005

STEP NO--UR/0000/70/000/000/0042/0042

CIRC ACCESSION NO--AT0125845

UNCLASSIFIED

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

2/2 025 UNCLASSIFIED CIRC ACCESSION NO--AT0125845 PROCESSING DATE--300CT70 ABSTRACT/EXTRACT-(U) GP-0-ABSTRACT. DESCRIPTION OF VERTICAL TEMPERATURE PROFILES AND GLOBAL CIRCULATION PATTERNS IN THE STRATOSPHERE AND MESOSPHERE, USING ROCKET DATA FROM RESISTANCE THERMOMETER, THERMISTOR, AND GRENADE MEASUREMENTS. THE OBTAINED MEAN TEMPERATURE DISTRIBUTION AS A FUNCTION OF ALTITUDE IS COMPARED WITH DIFFERENT STANDARD AND REFERENCE ATMOSPHERES. SEASONAL AND LATITUDINAL TEMPERATURE VARIATIONS ARE CONSIDERED TOGETHER WITH LONGITUDINAL VARIATIONS IN THE NORTHERN HEMISPHERE. ANALYSIS OF PRELIMINARY GLUBAL CIRCULATION PATTERNS IN THE UPPER STRATOSPHERE AND LOWER MESOSPHERE SHOWS THAT SUMMER ANTICYCLONIC CIRCULATION IS POLARLY SYMMETRICAL AND IS PRACTICALLY THE SAME IN BOTH HEMISPHERES. WINTER CIRCULATION IN THE SOUTHERN HEMISPHERE IS LESS PERTURBED DUE TO THE GROGRAPHY AND UNIFORMITY OF THE UNDERLYING SURFACE IN THIS HEMISPHERE. FACILITY: GLAVNGE UPRAVLENIE GIDROMETEOROLOGICHESKOI SLUZHBY SSSR.

UNCLASSIFIED

USSR

VDC 534.121.2:661.7

APEL'TSIN, I. E., KARELIN, F. N., LISHNEVSKIY, V. A., DUBYAGA, V. P., PEREPECHKIN, L. P., MIRONOVA, L. V., and ZAYCHUKOVA, N. A.

"Acetylcellulose Membranes for Desalination of Water by Hyperfiltration"

Moscow, Vodosnabzheniye i Sanitarnaya Teknika, No 6, 1971, pp 18-19

Abstract: Three types of membranes are reported suitable for water desalination. One prepared from an acetone solution of acetylcellulose "Etrol B" with a small quantity of water and magnesium perchlorate was deposited on glass at -12°C, kept in air for 3.5 min, the membrane was separated from glass and kept in water at 80° for 70 min. Such a membrane gave a 84-88% desalination with 500 1/m² day of water passage at 50 atm pressure. Using the same "Etrol B" acetyl cellulose in acetone and formanide, the membrane was formed on glass at 18°C, then treated at 80°C for 30 min. This membrane gave a 83-85% desalination with 800 1/m² day passage capacity at 50 atm pressure. Acetyl cellulose membranes prepared from acetic acid solution containing triethanolamine acetate and sulfate admixtures gave a 90-91% desalination with 300 1/m² day passage of water at 65 atm pressure.

1/1

1/2 017 UNCLASSIFIED PROCESSING DATE--230CT70
TITLE--USE OF COMPUTERS FOR SOLVING SOME GEOCHEMICAL PROBLEMS -U-

AUTHOR-(02)-ZAYDEL, A.R., PETUKHOV, A.V.

COUNTRY OF INFO--USSR

SOURCE--IZV. VYSSH. UCHEB. ZAVED., NEFT. GAZ 1970, 13(1), 13-17

DATE PUBLISHED---- 70

SUBJECT AREAS--ELECTRONICS AND ELECTRICAL ENGR., EARTH SCIENCES AND OCEANOGRAPHY
TOPIC TAGS--GEOCHEMISTRY, COMPUTER APPLICATION

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--1997/1093

STEP NO--UR/0152/70/013/001/0013/0017

CIRC ACCESSION NO--ATOLIN952

UNCLASSIFIED

CIRC ACCESSION NO--ATO119952
ABSTRACT/EXTRACT--(U) GP-O- ABSTRACT. THE COMPUTER PROGRAM PROVIDED FOR MAIN. STATISTICS AND CORKELATION OF THE ANAL. RESULTS, PROCESSING CHARLIER ON THE LOGNORMAL DERIVS. WAS PROVIDED FOR IT ANAL OF THE COMPUTENTS. EXPANSION IN SERIES OF GRAMMA DISTRIBUTION FORM. THE COMPUTING RESULTS WERE PRESENTED AS TABLES, AND COORDINATION DISTRIBUTION POLOTS OF THE GEOCHEM. DATA. FORMS FACILITY: MOSK. GOS. UNIV. IM. LOMONOSOVA, MOSCOW, USSR.

USSR

UDC: 661.143

TVERDOKHLEB, I. G., SAMINSKIY, L. A., ZAYDEL I. N., KUCHEROV, V. G.

"A Photochemical Method of Making Fine-Structured Screens With the Use of Centrifuging"

Sb. nauch. tr. VNII lyuminoforov i osobo chist. veshchestv (Collected Scientific Works of the All-Union Scientific Research Institute of Phosphors and Extra Pure Materials), 1971, vyp. 5, pp 119-124 (from RZh-Khimiya, No 7, Apr 72, Abstract No 71179)

Trunslation: The paper presents the results of a study of fine-structured screens made by photographic exposure of coatings deposited by centrifuging from a suspension of a luminescent composition in a solution of surface-active agent with subsequent application of an organic film of acrylate lacquer by using centrifugal forces before aluminizing. The surface-active agent and organic film are removed from the screen by heating in air. The method ensures a higher technological yield and improves the resolution of the screen as connectanized and shortens the duration of the technological processes. The method can be readily codure can be recommended for use in script production. Results.

USSR

UDC 533.6.011/72

ZAYDEL', R. M., (MOSCOW

"Shock Waves Propagation Through a Curved Interface of Two Media"

Noscow, Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No 1, Jan-Feb 72, pp 111-121

Abstract: The interaction of shock waves with a slightly curved interface of two media, one light and one heavy, and the motion of this interface, caused by shock waves passage are considered, with reference to the article by R. D. Richtmyer on Taylor instability in shock acceleration, Various limit cases, for ex. when the shock wave intensity tends to zero are analyzed using an analytical method developed previously by the author. The results obtained are in agreement with the Raleigh-Taylor basic equation of gravitational

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

ZAYDES, V. M., VOLKOVA, M. YA., BUKRINSKAYA, A. G., and ZHDANOV, V. M., Academician, Academy of Medical Sciences USSR, Institute of Virology, Academy of Medical Sciences USSR, Moscow

"Sedimentation and Density Characteristics of Some Cellular and Virus-Specific Ribonucleoproteins in Cytoplasmatic Extracts From Chick Embryo Cells Infected With Newcastle Disease Virus"

Moscow, Doklady Akademii Nauk SSSR, Vol 199, No 1, 1971, pp 219-221

Abstract: Fractionation of a cytoplasmatic extract from chick embryo cells containing labeled stable cellular RNA (H3 tagged) and virus-induced RNA (C14 tagged) showed that both labeled compounds sedimented at the same rate (~45 S) and in the same density region (~1.46 g/ml). This suggests that the cellualr and virus-specific ribonucleoproteins are physically related. Such an assumption is consistent with the results of N. V. Kaverin's functional analysis of the viral component of the hypothetical complex, which indicate that virus-induced RNA can be transported from the 45 S structures to polyribosomes. This complex is regarded as the initiator of viral protein synthesis.

1/1

UDC 576.858.5.083.35:616-006.6.018]:675.8.095.383.098.

USSR

V. N., VOLKOVA, M. Ya., and BUKRINSKAYA, A. G., Institute of Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences USSR, Moscow

"Virus-Induced RNA in Polyribosomes of Ehrlich Ascites Carcinoma Cells Infected With Sendai Virus"

Moscow, Voprosy Virusologii, No 5, Sep/Oct 70, pp 518-524

Abstract: After inoculation of Ehrlich ascites carcinoma cells with Sendai virus, virus-induced RNA was detected in pre-ribosome and post-ribosome zones of the sucrose gradient. The structures in the pre-ribosome zone was identified as virus-specific polyribosomes. Analysis in CsCl density gradient indicated that the polyribosomes occupy the rho = 1.51 g/cm3 position. Viral polyribosomes were sensitive to an Mg2+ deficiency in solution. When treated with a buffer solution containing a low Mg2+ concentration, polyribosome sedimented at a low rate during analysis in the sucrose density gradient. The virus-induced polyribosome RNA consisted primarily of 185 RNA and an RNA which sedimented in the heterogeneous zone at a greater rate. The 185 RNA was present in polyribosomes with a low sedimentation constant (110-170 S). 1/1 - 14 -

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

KAVERIN, N. V., ZAYDES, V. M., et al, Institute of Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences USSR. Moscow

"Sedimentation Analysis of Virus-Specific Informosome-Like Structures in Cell Extracts Infected With Newcastle Disease Virus"

Moscow, Voprosy Virusologii, No 2, Mar/Apr 71, pp 138-143

Abstract: In cell extracts infected with Newcastle disease virus, virusinduced RNA is distributed in the polyribosome zone and the postribosome
(-45S) area. Extracts were centrifuged in a sucrose density gradient.
Polyribosome material contains RNA of 18A, 35S and 57S classes, whereas
the postribosome material, representing the informosome-like 45-S component,
yielded only 18S RNA. When nonfractionated extracts were centrifuged in a
cesium chloride density gradient, a considerable portion of the radioactivity was detected in the zone corresponding to the buoyant density of
the informosome-like component (1.43 g/ml). Analysis of material of this
zone in a sucrose density gradient revealed the presence of a 90S-component
in addition to the 45-S structures. A hypothesis about the existence of
sedimentation classes of informosome-like structures, corresponding to
classes of virus-specific RNA, was suggested.

USSR

UDC 576.858

ZAYDES, V. M., ZASLAVSKIY, V. G., KAVERIN, N. V., BUKRINSKATA, A. G., and VOLKOVA, M. Ya. Institute of Virology imeni D. I. Ivanovskiy, Academy of Medical Sciences USSR, Moscow

"Virus-Specific Informosome-Like Component in Cell Extracts Infected With New-castle Disease Virus"

Moscow, Molekulyarnaya Biologiya, Vol 4, No 4, Jul/Aug 70, pp 607-611

Abstract: Slowly sedimenting structures in cytoplasmatic extracts of a culture of chick embryo cells infected with Newcastle disease virus were detected and characterized. These structures (an informosome-like component) contain a virus-induced RNA with a sedimentation coefficient of 455; they separate in the density gradient of cesium chloride in the rho=1.43g/ml zome. The RNA of the informosome-like component is complementary to the RNA of the mature virus whose sedimentation coefficient is 185. The data obtained are discussed in relation to the possible role of the informosome-like component in paramyxovirus reproduction.

1/1

USSR

UDC 576.858.75.098.396.332

ZAYDES, V. M., NIKOLAYEVA, O. G., SELIMOVA, L. M., and BUKRINSKAYA, A. G., Institute of Virology imeni D. I. Ivanovskiy, Academy of Madical Sciences USSR, Moscow

"The Role of Sendai Virus Mucleocapsid in Transcription of Viral RNA"

Moscow, Voprosy Virusologii, No 5, Sep/Oct 72, pp 602-608

Abstract: Sendai virus RNA-polymerase catalyzes incorporation of ribonucleoside triphosphates into an acid-insoluble material in vitro. The incorporation is linear for at least an hour. A portion of the synthesized substance is attached to the nucleocapsid. The bond is specific, and as soon as the growing chain matures into RNA, the nolecule becomes free and leaves the structure. Similarly, virus RNA-polymerase promotes synthesis of virus specific RNA in Ehrlich ascites carcinoma cells very soon after these cells are infected with Sendai virus, and RNA transcription occurs in structures resembling virus nucleocapsid. It is concluded that Sendai virus nucleocapsid participates in transcription of virus RNA in vitro and in vivo.

1/1

- 31 -

Burn Studies

USSR

unc 617-001.17-06:616-008.939.6-085.355:577-

DOLGINA, M. I., PANOVA, Yu. M., ZAYETS, T. L., and KUZNETSOVA, A. N., Institute of Surgery im. A. V. Vishnevskiy, Academy of Madical Sciences USSR, Moscow

"Ways of Slowing Protein Catabolism in Burns"

Moscow, Sovetskaya Meditsina, No 1, 1973, pp 33-36

Abstract: Contrical, an East German drug known to inhibit trypsin, chymotrypsin, plasmin, and kallidinogenase, was administered to 28 patients with extensive thermal burns, all of whom were suffering from hypoproteinemia, hypoalbuminemia, and elevated globulin levels at the initiation of contrical treatment. The drug prevented the continued decrease in serum proteins, especially albumins, characteristic of the early period of burns. Two to 3 days after the burn the activity of the proteclytic enzymen increased markedly along with the development of hypo- and dysprotinemia. Contrical was suspended after 7 days but proteclytic activity began to decrease and continued to do so for 7 more days. At this time the patients exhibited a tendency toward hyperexcretion of nitrogen (urea nitrogen) and sharp increase in excretion of creatine. Thus, contrical would seem to be efficacious in inhibiting the breakdown of tissue and serum proteins that normally occurs in burns.

172 022 UNCLASSIFIED PROCESSING DATE--04DEC70

TITLE--ROLE OF VOLUME ENERGY IN THE FORMATION OF SECONDARY

RECRYSTALLIZATION NUCLEI -U-

AUTHOR -- ZAYDMAN, I.D.

COUNTRY OF INFO--USSR

SOURCE--FIZIKA METALLOV I METALLOVEDENIE, JAN. 1970, 29, (1), 190-192

DATE PUBLISHED --- JAN70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--RECRYSTALLIZATION, NUCLEATION, TRANSFORMER STEEL, GRAIN STRUCTURE, HEAT OF CRYSTALLIZATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--2000/1386

STEP NO--UR/0126/70/029/001/0190/0192

CIRC ACCESSION NO--AP0125034

-----UNGLASSIFIED

2/2 022	UNGLASSIFIED	PROCESSING DATE04DEC70
CIRC ACCESSION NOAPO12503		Surely presentate the page
ABSTRACT/EXTRACT(U) GP-0- PLAYED IN THE FORMATION O		
TRANSFORMER STEEL BY THE	VOLUME ENERGY, OR RAT	HER THE DIFFERENCE IN THE
VOLUME ENERGY BETWEEN GRA		
HOULD APPEAR THAT THE EFF		
RECRYSTALLIZATION NUCLEI	CANNOT BE REGARDED AS	FINALLY ESTABLISHED, BUT
NEITHER SHOULD IT BE REFU	ITED WITHOUT FURTHER S	GIODY, ACCOUNTS CONTRACTOR OF THE CONTRACTOR OF
사용 경기 등 경기		
보고 있다. 그 사람들은 사람들은 사람들이 되었다. 화용하다 하는 사람들은 사람들은 사람들이 되었다.		
2. 현실 보통 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
(1946년 1920년 - 1922년 - 1924년 - 1922년 - - 1942년 - 1922년 - 192		
		(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
	NELASS IF TED	
· · · · · · · · · · · · · · · · · · ·	restations of the Belgita	·

UNCLASSIFIED PROCESSING DATE--04DEC70

TITLE--CONFORMITY BETWEEN THE CALCULATED AND RECORDED NUMBER OF PRIMARY

INFECTIOUS DISEASES IN CHILDREN'S COLLECTIVE BODIES -U
AUTHOR-(03)-LEVI, H.I., TURCHANINA, N.A., PAYDNER, G.B.

COUNTRY OF INFO--USSR

SOURCE—ZHURNAL MIKROBIOLOGII, EPIDEMIOLOGII I IMMUNDBIOLOGII, 1970, NR 6, PP 90-95

DATE PUBLISHED-----70

SUBJECT AREAS -- BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--PEDIATRICS, INFECTIOUS DISEASE, MATHEMATIC ANALYSIS, POISSON EQUATION

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3001/0416

STEP NO--UR/0016/70/000/006/0090/0095

CIRC ACCESSION NO--APO126169

UNCLASSIFIED

2/2 022 UNCLASSIFIED PROCESSING DATE--04DEC70 CIRC ACCESSION NO--APOL26169 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. A METHOD OF DETERMINATION OF THE NUMBER OF PRIMARY (BROUGHT IN) PATIENTS SUFFERING FROM INFECTIOUS DISEASES IN CHILDREN'S COLLECTIVE BODIES BY COMPARING THE NUMBER OF GROUPS FREE OF INFECTIONS WITH THE NUMBER OF ALL THE GROUPS WAS USED. THIS METHOD WAS SHOWN TO CORRELATE WELL WITH THE RECORDED NUMBER OF PATIENTS. THIS POINTED OUT THAT THE SUPPOSITION THAT DISTRIBUTION OF PRIMARY PATIENTS IN COLLECTIVE BODIES CORRESPONDED TO POUASSON'S DISTRIBUTION WAS CORRECT. THE NUMBER OF PRIMARY PATIENTS FAILED TO DEPEND DIRECTLY EITHER UPON THE CHARACTER OF THE INFECTION OR THE NUMBER OF DISEASES, BUT DEPENDED ON THE NUMBER OF COLLECTIVE BODIES FREE OF INFECTIONS, AND ON THE TOTAL NUMBER OF COLLECTIVE BODIES. FACILITY: MOSKOVSKAYA GORODSKAYA DEZINFEKTSIONNAYA STANTSIYA I SANITARNO-EPIDEMIOLOGICHESKAYA STANTSIYA KIYEVSKOGO RAYONA MOSKVY. UNCLASSIFIED

USSR

UDC: 621.372.832

ZAYENTSEV, V. V.

"Power Addition and Division in a Three-Decibel Directional Strip Coupler"

V sb. Radiofiz. i mikroelektronika (Radio Physics and Microelectronics-collection of works), Voronezh, 1970, pp 22-28 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6B167)

Translation: The author discusses the frequency properties of a coupler made in the form of two asymmetric transmission lines coupled at the wide wall, as well as its energy relationships under power addition and division conditions. The coefficient of reflection, signal power dissipated in loads, and the efficiency of the directional coupler in both the addition and division modes are determined. Four illustrations, bibliography of one title. N. S.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

UDC: 621.372.832

ZAYENTSEV, V. V.

"Scattering Matrix of a Wide-Band Power Divider With Outputs of Opposite Phase"

V sb. Radiofiz. i mikroelektronika (Radio Physics and Microelectronics-collection of works), Voronezh, 1970, pp 13-17 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6B166)

Translation: The author determines the scattering matrix of a wide-band power divider with antiphase outputs constructed on the principle of series connection of two directional couplers. The scattering matrix can be used to determine the input reflection factor for any mismatched output poles, as well as the energy relationships under power division and adding conditions. One table, bibliography of three titles. N. S.

1/1

- 59 L

A STANDARD REPORT OF THE PROPERTY OF THE PROPE

USSR

UDC: 621.396.61

SOKOLOV, M. F., ZAYENTSEV, V. V.

"Analysis of the Stability of an Amplifier With Distributed Gain Based on Power Transistors"

V sb. Radiofiz. i mikroelektronika (Radio Physics and Microelectronics-collection of works), Voronezh, 1970, pp 18-21 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6D293)

Translation: The authors analyze the stability of amplifiers with distributed gain based on power transistors with regard to the energy parameters and the capacitance of the collector junction in the feedback circuit. The limits of operational stability are determined. Two illustrations, bibliography of three titles. N. S.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

UDC: 621.372.54.061

ZAYEZDNYY, A. M., KEMESHIS, P. P., and STASYUNAS, A. S.

"Theoretical Bases of the Design of Parametric Filters Equivalent to Linear Filters"

Kiev, Izvestiya VUZ USSR--Radioelektronika, No 10, 1972, pp 1195-1203

Abstract: The parametric filters under discussion in this article are RC circuits designed to replace filters using inductances. As defined here, the parametric filter is a circuit consisting of resistors and a single capacitor, with one of the resistors varying in accordance with the control circuit signal. The linear filter consists of elements with constant parameters and can be described by the n-th order linear differential equation

$$\sum_{i=0}^{n} a_i \frac{d^i}{dt^i} x(t) = f(t)$$

with constant coefficients. The problem the authors set themselves is stated in this way: Given the differential equation or transfer 1/2

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

NESSENTAL PAR CHEREN EN LA CONTRETA DE LA CONTRE LA CONTRE DE LA CONTRE DE LA CONTRE LA CONTRE LA CONTRE DE LA NESSENTAL PAR CHEREN EN LA CONTRE DE LA CONTRE

USSR

ZAYEZDNYY, A. M., et al, Izvestiya VUZ USSR--Radioelektronika, No 10, 1972, pp 1195-1203

function of a physically realizable circuit, and given an external action f(t) and the circuit reaction x(t); required, to synthesize the circuit realizing the transformation of f(t) into x(t) under the condition that the circuit contain parametric filters and summer circuits of the same type connected in parallel. Three possible methods of solving the problem are offered: use of the Lagrange method of variation of constants, transition to the transfer function, and the recurrent method of finding periodic solutions.

2/2

77

Information Theory

USSR

UDC: 621.391.81

ZAYEZDNYY, A. M., BREYTMA, I. M., LIFSHITS, L. L.

"Methods of Accumulation and Their Use in Signal Processing"

Tr. uchebn. in-tov svyazi. M-vo svyazi SSSR (Works of Academic Institutes of Communications. Ministry of Communications of the UBSR), 1970, vyp. 51, pp 14-22 (from RZh-Radiotekhnika, No 6, Jun 71, Abstract No 6A81)

Translation: Various storage systems used for data transmission over communications channels are classified. The most detailed analysis is devoted to systems of parametric accumulation where the useful information is contained in the values of several parameters of the carrier, and systems of aggregate accumulation based on the principle of equipment redundance. Examples are considered. Resumé.

1/1

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

UDC: 621.372.061

ZAYEZDNYY, A. M. and ZAYTSDV, V. A.

"Structural-Signal Parametric Filters and Their Use as Signal Dividers"

Moscow, Radiotekhnika, Vol. 26, No. 1, 1971, pp 26-36

Abstract: The structural-signal parametric filters are defined as linear circuits with variable parameters constructed such that their parameters are controlled by functions of time in which information concerning the structural characteristics of the input signal is concentrated; they are described by nonhomogeneous, linear differential equations with coefficients which depend on structural characteristics. The purpose of this paper is give a corder according to the synthesis of such filters of the second amples of such syntheses are given, and the results were checked in complete accord with the theoretical results. The authors express their faith in these filters as a means of improving the I/I

APPROVED FOR RELEASE: 09/01/2001 CIA-RDP86-00513R002203730002-2"

USSR

UDC 621,396.2:621.371.1

ZAYEZDNYY, A. M., OKUNEV, YU. B. (Editors)

Apparatura peredachi diskretnoy informatsii NS-5 (Digital Data Transmission Equipment MS-5), Moscow, Svyaz' Press, 1970, 152 pp, 111. 60 k (from RZh-Radiotekhnika, No 4, Apr 71, Abstract No 4A220K)

Translation: The construction principles, characteristics, test results and basic schematic solutions of equipment designed for digital data transmission over shortwave radio channels are presented. The possibilities of using the equipment in various communications systems are investigated. The collection is intended for engineering, technical and scientific workers in radio communications. There are 99 illustrations, 6 tables and an 89-entry bibliography.

1/1

756

ZAYDOVSKIY	SPRS 5.39368 C-73 C-74 C-75 C-75
	THE HORPHOLOGY AND PER- FILE CAS PHASE FOLUPTOVOMILLOWAN FOLUPTOVOMI

			UDC: 621	3;621,039,	67	
USSH	В	00K				
	YEUTS S. L., KOMEI	L'KOV. V. S. (ge	neral edit	or), Kuchin	-	
DASHUK, P. N.,	LAYEVSKAYA, N. N.,	SHKUROPAT, P.	., SHNEYER	SON, G. A.		
TEKHNIKA BOL'SHI	OH IMPUL'SNYKH TOKO ses and Strong Magn	etic Fields), M	DECOM, WOO	III. Zuudo j	•	,
172 nn 111us v	Intro.	_	a side and of	haracter-		
	accominge circuits,	methods of car	d their pri	ncipal ele-	-	,
					,	
ments: capacito	rs, dischargers of), insulation of co	onnectors (busbs	rs, cables), and pulse stic fields	2	
solid-dielectric	sthode are presente	ed for calculati	tenation 10 no.	ies of oper	-	
and inductances	dethods are presented in solenoids and concurred elements as a concurrence or fields	onductors. The	well as t	he behavior		
ation of the str	uctural elements as	s.				
of metals in sal	JCT COM-	ontents .			rage	
					3 6	
Foreword					1.1	
Introduction . References (14	titles)					
						-
1/6						
		· ·				
·						

	1.1. Schematical 1.2. Circuits With Load References (12 titles) Chapter 2. High-Voltage 2.1. Special Requirement Used in Current Polyage in Current Polyage 1.2. Characteristics of 10 ⁴ -10 ⁷ Hz. 2.3. Operating Condition peated Oscillator 2.4. Inductance of Cap 2.5. Energy Losses in 2.6. Experimental Detection 2.7. Types of Pulse Cap References (47 titles Chapter 3. Vacuum Dischapter	Pulse Capacitors its for the High-Voltage Pulse Capacitors its for the High-Voltage Pulse Capacitors ilse Generators if Basic Insulating Materials at Frequencies ons of Capacitor Insulation Subjected to Re- y Discharges acitors Pulse Capacitors remination of Capacitor Characteristics reminations and Their Structural Elements in argers ents	12 23 27 28 28 29 34 47 65 73 76 104 107 107	
100 A	3.2. General Character 3.3. Insulation of Va	ristics of Vacuum Dischargers		

DASHUK, P. N. et al., TEKHNI POLEY, Moscow, "Atomizdat",	KA BOL'SHIKH IMPUL'SNYKH TOKOV I MAGNITNYKH
	of Vacuum Dischargers 120
	rent in a Vacuum Discharger
	num Discharger
	uum Dischargers
	173
	Atmospheric Pressure
l l Canada Dichergan	19 ¹
	ccompanying Commutation of High-Current
	222
Poforonos (0) titles	228
	Dischargers
	es of the Dischargers and Field of Appli-
cation	232
	233
	on, and Delay in Firing of Dischargers . 236
3/6	

USSR DASHUK, P. N. et al., TEKHNIKA BOL'SHIKH IMPUL'SNYKH TOKOV I MAGNITNYK POLEY, Moscow, "Atcmizdat", 1970		
5.4. Characteristics of a Spark Channel and Energy Release 5.5. Structural Elements and Some Peculiarities of Operational Use of Compressed-Gas Dischargers References (37 titles) Chapter 6. Solid-Dielectric Dischargers References (8 titles) Chapter 7. Insulation of Current Pulse Generators. Low-Inductance Cables 7.1. Design Modifications of Connecting Elements in Current Pulse Generators, and Requirements for Insulating them 7.2. Some General Characteristics of Insulation of Connecting Elements of All Types	241 247 254 256 267 268 268 268	
7.4. Construction of Individual Sections of the Insulation necting Elements, and Their Discharge Characteristics. 7.5. Low-Inductance Cables. 7.6. Dressing Cable Terminals References (50 titles)	278 281 286 296 301	
- 168 -	;	

USSR DASHUK, P. N. et al., TEKHNIKA BOL'SHIKH IMPUL'SNYKH TO FOLEY, Moscow, "Atomizdat", 1970			
POLEY, Moscow, "Atomizdat", 1970	KOV I MAGNITNYKI	I	
Chapter 8. Calculations of Current Pulse Generators 8.1. Computational Scheme 8.2. Fundamentals of an Approximate Method of Calculations of Pulse Guerance o	tating the T	304 304	
Along the Powink	rent is Commit -	307	
Cable Connection Inductance of Current Pulse Gar	Bratona III.	319	
Pulse Generator William of the Discharge Mode	of a Current	328	•
dynamic Forces the Resistance of Flat Bushars e	nd the Ele	330	
References (2)	• • • • •	333	
AND THE PROPERTY AND INDEED OF DATES AND THE SECOND OF THE PROPERTY AND TH	2 -	336	
THE TAX A SECOND AND A SECOND PROPERTY OF THE		348 349	
9.2. Low-Energy Current Pulse Generators 5/6		349	
5/6		377	
(義) 이 집을 보이 그 없는데 그는 그는 그는 이 눈을 하는 것이 같아 먹는 것이 모습니다.		•	
활동 , 회에 다른 아이는 사람들은 이 사람들이 하는 것이다.			
프레마스 사람이 있는 것은 사람들은 사람들이 되는 것이 없다.			-

	USSR DASHUK, P. N. et al., TEKHNIKA BOL'SHIKH IMPUL'SNYKH TOKOV I MAGNITNYKH POLEY, Moseow, "Atomizdat", 1970 9.3. Auxiliary Devices Used in Current Pulse Generators References (29 titles) Chapter 10. Producing Strong Magnetic Pulse Fields Chapter 10. Producing Strong Magnetic Pulse Fields. Basic 10.1. Field of Application of a Strong Magnetic Pulse Field. Basic Types of Solenoids and Their Peculiarities. 10.2. Requirements for the Energy Source 10.3. Calculations of the Magnetic Fields of Solenoids 10.4. Mechanical Strength and Construction of Solenoids for Producing Strong Magnetic Pulse Fields 10.5. Heat Characteristics of Coils for Obtaining Strong Pulse Magnetic Fields 10.6. Singularities in the Operation of Single-Turn Solenoids in	445	5.0
	Compact rang Magnetic fields	448 466	
	References (112 titles)		M.O.M.
			5.145th
A CONTRACT OF THE CONTRACT OF			

Acc. Nr: 0040340

naya Khirurgiya i Anesteziologiya, Eksperiment

Ref. Code: UR 0481

PRIMARY SOURCE:

, pp 85-87 1970, Nr

THE CHANGE OF SH-GROUPS CONTENT IN BLOOD SERUM UNDER THE INFLUENCE OF PARARENAL NOVOCAIN BLOCK

Babakaya, Yu. Ye.

It is shown that the effect of pararenal novocain block on the structure of blood proteeins is caused by injection of novocain into the pararenal region. Administration into the same zone of saline produces no changes in the fiter of SH-groups in serum into the same zone of saline produces intravangualy and intramuscularly likewise produces proteins. Administration of povocain intravangualy and intramuscularly likewise produces proteins. Administration of novocain intravenously and intramuscularly likewise produces no effect on SH-groups of serum proteins.

REEL/FRAME

02.20

UNCLASSIFIED ...

PROCESSING DATE--13MOV70

TITLE-ROLE OF GLUCOCORTICOID AND MINERALOCORTICOID SECRETION IN ... MOISTURBANCES OF PROTEIN METABOLISM AFTER THERMAL TRAUMA -U-AUTHOR-(02)-ZAYETS, T.L., MIKULIN, V.I.

CCUNTRY OF INFO--USSR

SOURCE--DOKL. AKAD. NAUK SSSR 1970, 192(1), 246-8

DATE PUBLISHED ---- 70

SUBJECT AREAS--BIOLOGICAL AND MEDICAL SCIENCES

TOPIC TAGS--ENZYME ACTIVITY, LIVER, MUSCLE PHYSIOLOGY, KIDNEY, THERMAL BURN, RAT, PROTEIN METABOLISM, METHIONINE, BLOOD SERUM, HEART MUSCLE, SULFUR ISOTOPE

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REGL/FRAME--3005/1662 STEP ND--UR/0020/70/192/001/0246/0248

CIRC ACCESSION NO--ATO133567

UNCLASSIFIED ...

032 2/2 UNCLASSIFIED CIRC ACCESSION NO--ATO133567 PROCESSING DATE--13NOV70 ABSTRACT/EXTRACT--(U) GP-0- ABSTRACT. MINERALOCORTICOIDS, BUT NOT GLUCGCORTICOTOS, INCREASED THE ACTIVITY OF PROTECLYTIC ENZYMES IN THE LIVER, MUSCLES, AND KIDNEYS OF BURNED RATS AND INCREASED PROTEIN SYNTHESIS IN ALL THE ORGANS. THE ADRENALECTOMY INDUCED DECREASE IN PROTECLYSIS IN RATS AFTER THERMAL TRAUMA WAS COMPLETELY RESTORED BY DECXYCCRTICOSTERONE ACETATE (DOCA). THE LEVEL OF PRIME35 S LABELED METHIONINE INCORPORATION IN THE LIVER, SERUM, AND CARDIAC MUSCLES OF ABRENALECTOMIZED BURNED RATS WAS RESTORED BY CORTISONE TO THE LEVEL FOR INTACT BURNED RATS. DOCA INCREASED THIS LEVEL TO LEVELS GREATER THAN THOSE IN CONTROL OR IN INTACT BURNED RATS. KHIR. IM. VISHNEVSKOGO, MOSCOW, USSR. FACILITY: INST. UNCLASSIFIED

UDC [537.226+537.311.33]:[537+535]

USSR

ZAYEV, N. Ye., and KUZ'MINA, R. P.

"Dependence of the Surface Charge Density of Electrets on Temperature"

Tr. VNII elektromekh. (Works of the All-Union Scientific Research Institute of Electromechanics), 1971, Vol 35, pp 200-209 (from RZh Fizika, No 12, Dec 71, Abstract No 12Ye1157)

Translation: It was found that the surface charge density of homoelectrets increases with an increase in temperature. With a lowering of the temperature, the surface charge density decreases. The experimental data are satisfactorily explained on the basis of the absorption theory of electrets: Resume.

1/1

- 68 -

Receivers and Transmitters

USSR

UDC 621.391.14

ZAYEZDNYY, A. M., PLOTKIN, Ye. I., CHERKASSKIY, Yu. A., Members of the Scientific and Technical Society of Radio Engineering, Electronics and Communications imeni A. S. Popov

"Signal Processing Based on Using the Structural Properties of the Signals"

Moscow, Radiotekhnika, Vol 26, No 9, Sep 71, pp 18-24

Abstract: The authors discuss the representation of signals in terms of their structural relations as illustrated by a class of structural models derived by comparing certain phase coordinates of a signal according to some rule. Exemples are given of application of the structural model to synthesis of signal processing algorithms. Receivers are designed which are invariant to certain classes of interference. Hibliography of 19

1/1

CIA-RDP86-00513R002203730002-2" **APPROVED FOR RELEASE: 09/01/2001**

USSR

UDC: 621.391.84:621.391.883.2

ZAYEZDNYY A. M. TARAYEV, A. I.

"Concerning the Probabilistic Characteristics of Structured Communications, and Possibilities for Using Them for Separating a Signal From a Mixture With Interference"

V sb. Materialy Nauch.-tekhn. konf. Leningr. elektrotekhn. in-t svyazi. Vyp. 1 (Materials of the Scientific and Technical Conference of the Leningrad Electrical Engineering Institute of (from RZh-Radiotekhnika, No 3, Mar 72, Abstract No 3A21)

Translation: The paper proposes probabilistic characteristics for structured communications; these characteristics are combinations of the characteristics of the phase coordinates.

1/1